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COMMENT 

On the canonical transformation theorem of Currie 
and Saletan 

F J Diez Vegas 
Departamento de lnformatica y Automatica UNED, Avda. Senda del Rey, s /n  28040 
Madrid, Spain 

Received 8 December 1988 

Abstract. The distinction between canonical and canonoid transformations, introduced by 
Currie and Saletan, is here emphasised through an example, which also shows that the 
initial condition of their theorem was quite strict. A step forward is taken by reducing the 
requirement that all quadratic Hamiltonians be canonoid to the requirement that a finite 
number of them be canonoid. 

It is often advantageous in a physical problem to find a coordinate transformation 
which simplifies Hamilton’s equations whilst preserving their canonical form. Such a 
transformation is said to be canonoid with respect to that particular Hamiltonian. 

It is commonly believed that it is then necessarily canonical, i.e. that this property 
will hold as well for any other Hamiltonian; but we must be careful. In fact, whether 
we impose this condition on a particular system or a general one, the matter at issue 
may be quite different. 

The distinction becomes evident in the following example. Let us consider the 
transformation 

3 q ’ =  q e2‘ p ’ = p .  
The Hamiltonian 

H = cqp 

leads to 

The condition of integrability for the existence of H’ is 
a2H‘ d’H‘ 

- , a c  = 1. 
aq’ap’ ap’aq 

Hence this transformation is canonoid for H = qp but not canonical. 
Furthermore, the example encountered illustrates a surprising fact: even in the case 

that a transformation is canonoid for one or several Hamiltonians, it is not necessarily 
canonoid for a linear combination of them. 
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The distinction between canonoid and canonical was first pointed out by Currie 
and Saletan (1972),  who also demonstrated that a transformation is canonical if it is 
canonoid for all quadratic Hamiltonians: 

H = C -I- ca5a + f ~ , p 5 &  

where the 6 are the generalised coordinates 

a = 1,.  . . , n 
a = n + 1, . . . , 2n .  ( a  = { qa 

Pa-n 

The worth of Currie and Saletan's theorem is that it permits one to extend the 
property of being canonoid from a certain class of Hamiltonians to all others. Neverthe- 
less, it starts from an injnite number of Hamiltonians and the condition required turns 
out to be still very strict, even though it deals with a linear combination of 2n2 + 3 n  + 1 
basic Hamiltonians (remember the conclusion from the example above). 

The main purpose of the present contribution is to enhance Currie and Saletan's 
theorem by reducing the initial condition to a finite set of 5 n  Hamiltonians. A second 
aim is to offer a self-contained proof, without the reference to Schur's lemma required 
in the original work. The new statement could be set up as follows. 

Theorem. An invertible transformation 77, = va( 5, t )  is canonical if it is canonoid with 
respect to the following Hamiltonians: 

(i)  H=O 
(ii) 
(iii) H = titi+ I 

H = 6 ,  H = 6: i = 1, .  . . , 2 n  
i =  1,. . . , n -1. 

Preliminaries for the prooj Let us define the 2n x 2n matrix 

which is unimodular, antisymmetric: 

Yap = -Ypa 

and orthogonal: 

YaL7Ypv = 6ap  * (1) 

(In accordance with Einstein's convention there is an implicit sum over all repeated 
Greek indices.) 

This allows us to write Hamilton's canonical equations as 

and the Poisson bracket within the 8 coordinates as 

aF aG 

at* a63 
[F ,  Cl'=- yap-. 

For an invertible transformation on phase space T~ = v u ( &  t ) ,  any function can be 
expressed as depending on the new variables: 
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Accordingly, the respective Poisson bracket becomes 

where we have defined the p as the functions 

It can be shown that 

7 A aA . a i  
a T U  at 

A = A = -  7j, +- 

These li are of course given by 

From a lemma presented in Currie and Saletan (1972), this transformation will be 
canonoid for H, i.e. there will exist a new Hamiltonian H ’ ( q ,  t )  such that 

if and only if it holds that 

(6) 
d 
z [ F ,  G]”=[k, G ] “ + [ F ,  GI” 

for every pair of differentiable functions 2(s, t )  and &(s, t ) .  

Proof of the theorem. On account of the definition (3), every function pap([,  t )  is 
independent of H, although its total time derivative, given by 

is expected to depend on the actual Hamiltonian. 

theorem imply, respectively, that 
Nevertheless, as shown in Currie and Saletan (1972), conditions (i) and (ii) of the 

Therefore, 

-- - 0  & U p  
d t  

for all Hamiltonians. 
In particular, we take H = tf, i = 1 , .  . . , 2 n .  The motion is 

(7)  

(There is no sum on Latin indices.) 
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W e n  the lemma is applied, property ( 6 )  turns into 

which is equivalent to 

YiaPip = YipPia. (8) 
We define 2n constant c by 

c. = p.  y .  g IO ;U = PoiYui. 

After multiplying (8) by y i p ,  summing over /3 and remembering ( l ) ,  we obtain 

Yaici = Pai Vi. (9) 

In a similar fashion, for the Hamiltonian H = i = 1, . . . , n - 1, we have 

and property ( 6 )  has now the form 

0=/1"8- d 
dt  - YaiPi+lp + Yrri+lPip + YpiPui+l+ Ypi+lPai. 

If we multiply it by y i u y i + l P  and proceed as before, we arrive at 

C i + l  = Cl i =  1,. . . , n - 1 .  

From (9) we observe that 
y..c. = pij = -p. .  = - y..c. = r J '  J I  j i  J Yijcj. 

F o r j = i + n ,  y V = l  and so 
c. = c. 

I I + n *  

This means that 

c, = c* = . . . = C2n = z 

which, introduced into ( 9 ) ,  works up to 

We prove that z is not null by taking determinants: 

Henceforth, from ( 2 ) ,  

[F ,  GI" = z [ F ,  GI5. 

This is a well known condition for a transformation to be canonical. In fact, for 
any given Hamiltonian H 

d 
- [ F ,  G ] " = z ( [ ~ $  G] '+[F,  G I * ) = [ @ ,  G ] " + [ F ,  GI" 
dt  

and the lemma can now be applied inversely. 
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Final remarks. From (4) and ( 5 )  it is straightforward to show that a transformation 
canonoid for some Hamiltonians is also canonoid for every linear combination of them 
if it is canonoid for H = 0. 

It is also not difficult to prove that if 

3- 
a t  

- constant 

(as is the case for a time-independent transformation), then 7, = ~ ~ ( 5 ,  t )  is canonoid 
for H = 0. And if the partial derivatives 

& 
a b  

are constant as well, it will also be canonoid for every H = ti. 

many of the most usual cases. 
For the application of the theorem, these properties may be a valuable help in 
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